Regeneration limit of classical Shannon capacity

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regeneration limit of classical Shannon capacity.

Since Shannon derived the seminal formula for the capacity of the additive linear white Gaussian noise channel, it has commonly been interpreted as the ultimate limit of error-free information transmission rate. However, the capacity above the corresponding linear channel limit can be achieved when noise is suppressed using nonlinear elements; that is, the regenerative function not available in...

متن کامل

Nonlinear communication channels with capacity above the linear Shannon limit.

We prove that, under certain conditions, the capacity of an optical communication channel with in-line, nonlinear filtering (regeneration) elements can be higher than the Shannon capacity for the corresponding linear Gaussian white noise channel.

متن کامل

Is "Shannon-capacity of noisy computing" zero?

Towards understanding energy requirements for computation with noisy elements, we consider the computation of an arbitrary k-input, k-output binary invertible function. In our model, not all gates need to be noisy. However, the input nodes on the computation graph must be separated from the output nodes by a noisy cut. For this setup, we show that for the “information-friction” model proposed r...

متن کامل

On the Shannon capacity of a graph

A/Mmcr-It is proved that the Shannon zero-error capacity of the pentagon is e. The method is then generalized to obtain upper bounds on the capacity of au arbitrary graph. A well-characterized, and in a sense easily computable, function is introduced which bounds the capacity from above and equals the capacity in a large number of cases. Several results are obtained on the capacity of special g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nature Communications

سال: 2014

ISSN: 2041-1723

DOI: 10.1038/ncomms4861